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8.1 ACYCLIC PARTIAL MATCHINGS

Let K be a simplicial complex. For any pair of simplices σ, τ in K, we write σC τ to indicate
that σ is a codimension one face of τ, i.e., that σ ≤ τ and dim τ − dim σ = 1.

DEFINITION 8.1. A partial matching on K is a collection Σ = {(σ• C τ•)} of simplex-pairs in
K subject to the following constraint: if a pair (σC τ) lies in Σ, then neither σ nor τ appear in
any other pair of Σ.

More elaborately, a partial matching Σ consists of two disjoint subsets of simplices SΣ, TΣ ⊂ K
along with a bijection µΣ : SΣ

∼−→ TΣ so that σ C µ(σ) holds for every σ in SΣ. Crucially,
we do not require K = SΣ ∪ TΣ, so there might be simplices in K which remain untouched by
the matching. These unmatched simplices lying in the complement CΣ := K − (SΣ ∪ TΣ) are
called Σ-critical. It should also be noted that none of the sets SΣ, TΣ and CΣ are required by this
definition to be subcomplexes of K.

Partial matchings are relevant to us because under certain assumptions (to be described in
gory detail below), we can compute the homology groups of K using a chain complex whose
chain groups are built using only the critical simplices of a partial matching. Thus, finding a
good partial matching with very few critical simplices makes it possible to drastically reduce the
algorithmic burden of computing homology groups. Before describing all this machinery, we
will examine some examples (and non-examples) of partial matchings.

EXAMPLE 8.2. Partial matchings are usually illustrated using arrows pointing from the
smaller simplex σ to the larger simplex τ whenever (σC τ) lies in Σ. Consider the diagrams
I-IV below:

Both I and II constitute legal partial matchings — the elements of SΣ are sources of arrows
while the elements of TΣ are targets. The simplices σ3 and τ3 in I remain untouched by arrows
and are therefore critical (but note that II has no critical simplices). Neither III nor IV are
partial matchings — in III there is a simplex with two incoming arrows whereas in IV there is
a simplex with two outgoing ones.

Fix a partial matching Σ on K.

DEFINITION 8.3. A Σ-path is a zigzag sequence of distinct simplices in K of the form

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm), (7)

where (σiC τi) lies in Σ for all i in {1, . . . , m}. Such a path is gradient if either m = 1 or σ1 is not
a face of τm. We say that Σ is an acyclic partial matching if all of its paths are gradient.
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Of the two legal partial matchings depicted in Example 8.2 above, only I is acyclic — the non-
gradient paths in II can be discovered by starting at any vertex and following arrows until the
loop is completed. Henceforth we will only consider acyclic partial matchings; our interest in
this special subset is primarily motivated by the following result.

THEOREM 8.4. Let Σ be an acyclic partial matching on a simplicial complex K, and let F be any
coefficient field. There exists a chain complex (of F-vector spaces)

· · ·
dΣ

k+1
// CΣ

k (K; F)
dΣ

k
// CΣ

k−1(K; F)
dΣ

k−1
// · · ·

dΣ
2
// CΣ

1 (K; F)
dΣ

1
// CΣ

0 (K; F) // 0

satisfying three properties:

(1) each chain group CΣ
k (K; F) is

⊕
α F, indexed by critical k-simplices α ∈ CΣ,

(2) the boundary operators dΣ
k are explicitly determined by knowledge of Σ-paths, and

(3) the homology groups of (CΣ
• (K; F), dΣ

• ) are isomorphic to those of K.

The next two Sections are devoted to the task of
building the boundary operators dΣ

• from Σ-paths and
proving the isomorphism on homology as promised by
properties (2) and (3) respectively. If the set of critical
simplices CΣ ⊂ K forms a subcomplex of K, then the
Theorem above can be proved without much difficulty.
The illustration here contains one example of this easy
case: the complex K is a triangulation of the cylinder
∂∆(2) × [0, 1], and the critical simplices CΣ consist of
the base circle (spanned by the vertices a0, a1, a2 and the
three edges between them). In this case there is a se-
quence of elementary collapses (as in Proposition 2.14)
from K to CΣ. This establishes a homotopy equivalence,
and hence the desired isomorphisms on homology by Theorem 4.24. Thus, our challenge in
proving Theorem 8.4 stems from the fact that in general CΣ ⊂ K will not be a subcomplex.

REMARK 8.5. Acyclic partial matchings are combinatorial analogues of gradient vector fields
from differential geometry, and the main idea behind the proof of Theorem 8.4 is to deform the
original chain complex (C•(K), ∂K

• ) to the smaller chain complex (CΣ
• (K), dΣ

• ) by flowing down
along the arrows of this combinatorial gradient vector field. As such, Theorem 8.4 forms the
simplicial analogue of one of the main results from smooth Morse theory. For these historical
reasons, (CΣ

• (K), dΣ
• ) is called the Morse chain complex associated to Σ, and the study of

acyclic partial matchings is called discrete Morse theory.

8.2 THE MORSE CHAIN COMPLEX

Let K be a simplicial complex with ordered vertices. Given any simplices σ and τ in K, let
[τ : σ] ∈ {0,±1} indicate the coefficient of σ in the boundary of τ (see Definition 3.4) — this
number is nonzero if and only if σC τ. Fix an acyclic partial matching Σ on K as in Definition 8.3.
Here we will build the boundary operators dΣ

• whose existence was promised in the statement
of Theorem 8.4. The first step in this direction is to associate an algebraic contribution to each
Σ-path.
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DEFINITION 8.6. The weight w(ρ) ∈ {±1} of the Σ-path

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm),

is defined to be the product

w(ρ) =
−1

[τ1 : σ1]
· [τ2 : σ1] ·

−1
[τ2 : σ2]

· · · [τm−1 : σm] ·
−1

[τm : σm]

One can equivalently collect numerators and denominators to express the weight of each Σ-path
ρ as a single ratio

w(ρ) = (−1)m · ∏m−1
i=1 [τi : σi+1]

∏m
i=1[τi : σi]

,

but the un-collected version will be more convenient for our purposes.
Recall (from the statement of Theorem 8.4) that the vector space CΣ

k (K) has as its basis the set
of all k-dimensional Σ-critical simplices. We will define the desired linear maps from assertion
(2) of Theorem 8.4 as matrices with respect to these chosen bases. And for each gradient path ρ
as in (7), we indicate the first simplex σ1 and last simplex τm by σρ and τρ respectively.

DEFINITION 8.7. For each dimension k ≥ 0, the k-th Morse boundary operator is the linear
map dΣ

k : CΣ
k (K) → CΣ

k−1(K) given by the following matrix representation: its entry in the
column of a critical k-simplex α and the row of a critical (k− 1)-simplex ω is given by

[α : ω]Σ = [α : ω] + ∑
ρ

[α : σρ] · w(ρ) · [τρ : ω], (8)

where ρ ranges over all the Σ-paths.

There are three aspects of the formula (8) which might merit deeper consideration. First,
the term [α : ω] on the right side is precisely the entry in ω’s column and α’s row within the
simplicial boundary matrix ∂K

k — thus, the difference between this original entry and our new
Σ-perturbed one is precisely the sum-over-paths term. Second, we don’t have to sum over all
the paths; the only paths that make a non-zero contribution are the ones which flow from α to ω
like so:

αB
(
σ1C τ1B σ2C τ2B · · ·B σm C τm

)
Bω.

And third, life gets much simpler when working over the field F = Z/2 because in this case each
path connecting α to ω has weight 1; thus, it suffices to simply count the odd/even parity of the
number of such connecting Σ-paths.

PROPOSITION 8.8. The pair (CΣ
• (K), dΣ

• ) constitutes a chain complex.

PROOF. It suffices by induction to show that the desired result holds when Σ consists of a
single pair (σC τ) of simplices in K; thus the set of critical simplices is CΣ = K− {σ, τ}, and the
only Σ-path is

ρ = (σC τ).

To show that dΣ
• is a boundary operator, we must establish that for each fixed α, ω ∈ CΣ, the sum

B = ∑
ξ

[α : ξ]Σ · [ξ : ω]Σ
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equals zero when indexed over all ξ ∈ CΣ. Using the formula (8), the contribution of each ξ to
this sum is the product

Bξ =

(
[α : ξ]− [α : σ] · [τ : ξ]

[τ : σ]

)
·
(
[ξ : ω]− [ξ : σ] · [τ : ω]

[τ : σ]

)
.

The negated term in the first factor disappears whenever dim ξ 6= dim σ, and the negated term
in the second factor disappears whenever dim ξ 6= dim τ. Thus, only three of the four terms
survive when we multiply these two factors:

Bξ = [α : ξ] · [ξ : ω]− [α : σ] · [τ : ξ] · [ξ : ω]

[τ : σ]
− [α : ξ] · [ξ : σ] · [τ : ω]

[τ : σ]

Summing over ξ ∈ CΣ, we have B = ∑ξ Bξ given by

B = ∑
ξ

[α : ξ] · [ξ : ω]− [α : σ]

[τ : σ] ∑
ξ

[τ : ξ] · [ξ : ω]− [τ : ω]

[τ : σ] ∑
ξ

[α : ξ] · [ξ : σ].

It is now straightforward to check that B = 0 because ∂K
• is a boundary operator on C•(K). In

particular, the first sum evaluates to −([α : σ] · [σ : ω] + [α : τ] · [τ : ω]), while the second term
evaluates to [α : σ] · [σ : ω] and the third term to [α : τ] · [τ : ω]. �

As mentioned before, we call (CΣ
• (K), dΣ

• ) the Morse chain complex associated to our acyclic par-
tial matching Σ; although we have not yet shown that it has the same homology as (C•(K), ∂K

• ),
this is a good time to examine a few known cases and verify this assertion experimentally. One
can build an acyclic partial matching on any simplicial complex by performing these two steps
over and over until all simplices have been classified as matched or critical — initially, all sim-
plices are unclassified:

(1) classify a simplex of lowest available dimension as critical; then,
(2) while there exist pairs (σC τ) of unclassified simplices so that σ is the only unclassified

face of τ, classify (σC τ) as matched.

Although this process is not guaranteed to produce the largest acyclic partial matching (i.e., the
one containing the fewest possible critical simplices), it is devastatingly effective in practice.

Illustrated here is the acyclic partial matching
imposed by this simple two-step algorithm on the
torus (note that the left and right edges of the fig-
ure have been identified, as have the top and bot-
tom ones). In the first stage, one classifies the ver-
tex a as critical; this creates various edges (such as
ab, ad, etc.) with only one unclassified vertex in
their boundaries — these produce the matchings
indicated by red arrows. At the end of this pro-
cess, all the vertices have been matched with edges,
but there are several 2-simplices remaining with
more than one unmatched edge in their bound-
aries. Next, we classify bc as critical and are al-
lowed to make matchings indicated by the blue ar-
rows. Next, we classify de as critical and make the
purple matchings. Finally, only the simplex f gh remains unclassified, so it becomes critical. The
critical simplices lie far away from each other, and do not form a subcomplex of the torus.
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EXAMPLE 8.9. Let K be the triangulated torus and Σ the overlaid acyclic partial matching
illustrated above. The Σ-critical simplices are {a, bc, de, f gh}, so the associated Morse chain
complex has the form

· · · // 0 // F
dΣ

2
// F2 dΣ

1
// F // 0

To really determine the boundary operators using (8) for arbitrary F, we would have to impose
an ordering on the vertices and keep careful track of minus signs. Let’s instead work over Z/2
and count gradient paths — there are two from bc to a, namely:

bcB (bC ab)B a and bcB (cC ac)B a.

Since there is an even number of connecting gradient paths, the entry dΣ
1 |bc,a equals 0. Pro-

ceeding similarly, one can check (exercise!) that both dΣ
1 and dΣ

2 are zero maps, which makes it
trivial to compute the homology of the torus.

8.3 THE EQUIVALENCE

Let Σ be an acyclic partial matching on a simplicial complex K. Our goal here is to complete
the proof of Theorem 8.4 by showing establishing the following result.

PROPOSITION 8.10. The Morse chain complex (CΣ
• (K), dΣ

• ) of Proposition 8.8 is chain homotopy
equivalent to the standard simplicial chain complex (C•(K), ∂K

• ).

In other words, we will describe two chain maps

ψ• : C•(K)→ CΣ
• (K) and φ• : CΣ

• (K)→ C•(K)

along with a pair of chain homotopies relating φ• ◦ ψ• and ψ• ◦ φ• to the identity chain maps on
C•(K) and CΣ

• (K) respectively. The best way to build ψ• and φ• is by processing the simplex-
pairs (σC τ) in Σ one at a time. Given this strategy, it is instructive to first examine the special
case where Σ contains a single pair (σC τ).

Consider the entries (in the usual matrix representation) of ∂K
dim τ corresponding not only to

our chosen pair (σC τ), but also two arbitrary simplices α and ω.

In order to algebraically disentangle σ and τ from the other simplices, we treat the ±1 entry
[τ : σ] as a pivot and seek to clear out all the other entries in both Col(τ) and Row(σ). This
requires performing row and column operations of the form

Row(ω)← Row(ω)− [τ : ω]

[τ : σ]
· Row(σ)

∣∣∣ Col(α)← Col(α)− [α : σ]

[τ : σ]
·Col(τ). (9)
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After these operations have been performed, the entry in α’s column and ω’s row equals

[α : ω] + [α : σ] · −1
[τ : σ]

· [τ : ω], (10)

which agrees with the expression for [α : ω]Σ from (8) because there is only one Σ-path σC τ.
More importantly, the row and column operations of (9) suggest the structure of the desired
chain maps which take us from C•(K) to CΣ

• (K) and back. This allows us to prove Proposition
8.10 in the special case where Σ contains only one pair.

LEMMA 8.11. Let Σ be an acyclic partial matching on K containing only one pair (σC τ). Then the
simplicial chain complex (C•(K), ∂K

• ) is chain homotopy equivalent to the Morse complex (CΣ
• (K), dΣ

• ).

PROOF. For each k ≥ 0, define the linear maps ψk : Ck(K) → CΣ
k (K) by the following matrix

representation; for each pair of k-simplices (α, ω) in K × (K − {σ, τ}), the entry in α’s column
and ω’s row is

ψk
∣∣
α,ω =


− [τ:ω]

[τ:σ] α = σ

1 α = ω 6= τ

0 otherwise.

(11)

Conversely, define the linear maps φk : CΣ
k (K) → Ck(K) by placing the following entry in the

column of ω in K− {σ, τ} and the row of α in K:

φk
∣∣
ω,α =


− [ω:σ]

[τ:σ] α = τ

1 ω = α 6= σ

0 otherwise.

(12)

Checking that both ψ• and φ• are chain maps has been relegated to two of the Exercises. To ex-
tract the chain homotopies, first note that ψ• ◦ φ• equals the identity map on CΣ

• (K). Conversely,
the composite φ• ◦ ψ• is given by

φk ◦ ψk
∣∣
α,α′ =


− [τ:α′]

[τ:σ] α = τ 6= α′

− [α:σ]
[τ:σ] α 6= σ = α′

1 α = α′

0 otherwise.

One can now check that the linear maps θk : Ck(K)→ Ck+1(K) prescribed by

θ
∣∣
α,β =

{
1

[τ:σ] α = σ and β = τ

0 otherwise
(13)

furnish the desired chain homotopy between φk ◦ ψk and the identity chain map. �

The acyclicity of Σ plays an important role when attempting to iteratively apply Lemma 8.11
for the purposes of proving Proposition 8.10. Acyclicity guarantees that removing a single pair
(σC τ) ∈ Σ from K does not alter the entry [τ′ : σ′] in the boundary matrix corresponding to
another pair (σ′ C τ′) ∈ Σ. To see why, note from (10) that the difference between the old and
new entries equals

[τ′ : σ] · [τ : σ′]

[τ : σ]
.
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Assuming that the numerator is nonzero, we are forced to conclude that the the Σ-path σC τB
σ′ C τ′ is not gradient, which leads to the desired contradiction. As a consequence, the repeated
application of Lemma 8.11 correctly converges to the Morse complex regardless of the order in
which we remove the simplex-pairs lying in Σ.

8.4 FOR PERSISTENCE

The machinery of acyclic partial matchigns and Morse complexes is extremely flexible, and
admits powerful generalizations. Here we will describe how to construct filtered Morse com-
plexes for the purposes of simplifying the persistent homology computations which formed
the focus of Chapter 6. Let F•K be a (R+-indexed) filtration of a simplicial complex K, and let
b : K → R+ be the associated monotone function σ 7→ inf {t ≥ 0 | σ ∈ Ft(K)}.

DEFINITION 8.12. An acyclic partial matching Σ on K is F•-compatible if b(σ) = b(τ) holds
for every pair of simplices (σC τ) in Σ.

This compatibility requirement forces Σ-paths to be decreasing with respect to b.

PROPOSITION 8.13. Let Σ be an F•-compatible acyclic partial matching on K. For any Σ-path

ρ = σ1C τ1B · · ·B σm C τm,

we have b(σi) ≥ b(σj) for all i ≤ j.

PROOF. For each i ∈ {1, . . . , m} we have an equality b(σi) = b(τi) by the F•-compatibility of
Σ and an inequality b(τi) ≥ b(σi+1) by the monotonicity of b : K → R. �

This elementary observation has some wonderful consequences when it comes to simplifying
computations of persistent homology. For each t ∈ R+, let Σt ⊂ Σ be the restriction of Σ to
(pairs which lie in) the subcomplex FtK ⊂ K, and let (Mt

•, dt
•) be shorthand for the affiliated

Morse complex (CΣt
• (FtK), ∂Σt• ).

COROLLARY 8.14. For each pair 0 ≤ t ≤ s of real numbers, there is an inclusion (Mt
•, dt
•) ↪→

(Ms
•, ds
•) of Morse chain complexes.

PROOF. The critical simplices in FtK remain critical in FsK, so Mt
k is naturally a subspace

of Ms
k for all k ≥ 0. Thus, it suffices to check that the Morse boundary operator ds

k equals dt
k

when restricted to the subspace Mt
k. But this follows directly from the formula (8) — consider a

Σ-critical k-simplex α ∈ FtK, and a Σ-path of the form

ρ = (σ1C τ1B · · ·B σm C τm)

so that αBσ1. By the monotonicity of b, we have t ≥ b(α) ≥ σ1. Now Proposition 8.13 guarantees
that all subsequent Σ-paired simplices σiC τi appearing in ρ must have b-values bounded above
by t. In particular, adding new simplices from (Fs − Ft) can not possibly change the Σ-paths
over which we sum when evaluating the Morse boundary of α in Ms

k, whence ds
k(α) = dt

k(α) as
desired. �

Having found a nested sequence of Morse complexes, one seeks to relate persistent homology
groups of Hk(F•K) to those of Hk(M•, d•). The basic idea, as one might expect, is to unite all the
chain homotopy equivalences {ψt, φt | t ≥ 0} promised by Proposition 8.10 between C•(FtK)
and Mt for each t ≥ 0 into a single equivalence relating the two persistence modules.
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THEOREM 8.15. For each dimension k ≥ 0 and pair of real numbers 0 ≤ t ≤ s, there are
isomorphisms

PHt→sHk(F•K) ' PHt→sHk(M•, d•)
of persistent homology groups. Therefore, the barcodes of Hk(F•K) and Hk(M•, d•) are equal.

PROOF. Enumerate all the simplex-pairs in Σ according to their b-values, i.e., write

Σ = {(σ1C τ1), (σ2C τ2), . . . , (σm C τm)}

so that b(σi) ≤ b(σj) whenever i ≤ j. Applying Lemma 8.11 to the Σ-pairs in this order, we
obtain a family of chain homotopy equivalences indexed by t ≥ 0:

ψt
• : C•(FtK)→ Mt

• and φt
• : Mt

• → C•(FtK)

which fit into a commuting diagram with the natural inclusion maps. Namely, for any pair
of positive real numbers t ≤ s and dimension k ≥ 0, the following diagrams of vector spaces
commute:

Ck(FtK)

ψt
k
��

� � // Ck(FsK)

ψs
k
��

Ck(FtK) �
�

// Ck(FsK)

Mt
k
� � // Ms

k Mt
k

φt
k

OO

� � // Ms
k

φs
k

OO

Since ψt and φt form two halves of a chain homotopy equivalence, they induce isomorphisms
on k-th homology for all k ≥ 0. Thus, we obtain a 0-interleaving between the two k-th homology
persistence modules, which guarantees that all their persistent homology groups are isomorphic.

�

From the perspective of using this result to simplify computations, it is important to note that
large F•-compatible partial matchings can only be found on filtrations where lots of simplices
share the same b-values. Fortunately, this requirement is always satisfied by the Vietoris-Rips
filtration. Consider a collection of points P = {p0, . . . , pk} so that the largest pairwise distance
d(pi, pj) equals t′ > 0, corresponding to a single edge (pi, pj). Then the set of simplices born at
this scale t′ in VR•(P) include not only our edge, but also every other simplex containing this
edge in its boundary.

8.5 FOR SHEAVES

Aside from the usual cognitive dissonance caused by reversing arrows when transitioning
from homology to cohomology, there are not too many obstacles involved in using acyclic partial
matchings to simplify sheaf cohomology computations. Let S be a sheaf (see Definition 7.1) on
a simplicial complex K.

DEFINITION 8.16. An acyclic partial matching Σ on K is S -compatible if the restriction map
S (σ ≤ τ) is an isomorphism for every pair (σC τ) in Σ.

The weights of gradient paths from Definition 8.6 must now be upgraded from scalars to
linear maps. It will be convenient, for simplices α, β in K, to define the scaled restriction map
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Sα,β : S (α)→ S (β) as

Sα,β = [β : α] ·S (α ≤ β) =


+S (α ≤ β) α = β−i for even i,
−S (α ≤ β) α = β−i for odd i,
0 otherwise.

This linear map forms the block in α’s column and β’s row in the coboundary operator ∂S
• from

Definition 7.6. For each Σ-path

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm);

define the S -weight wS (ρ) to be the composite linear map S (τm)→ S (σ1) given by

(−1)m ·
[
S −1

σ1,τ1
◦Sσ2,τ1 ◦S −1

σ2,τ2
◦ · · · ◦S −1

σm,τm

]
.

Unsurprisingly, these S -weights make an appearance when defining the Morse complex of Σ
with S -coefficients.

DEFINITION 8.17. Let S be a sheaf over the simplicial complex K and Σ an S -compatible
acyclic partial matching. The Morse complex of Σ with coefficients in S is a cochain complex(

C•Σ(K; S ), ∂•S ,Σ
)

defined as follows. For each dimension k ≥ 0,
(1) the vector space Ck

Σ(K; S ) equals the product of stalks ∏α S (α) where α ranges over
the k-dimensional Σ-critical simplices, and

(2) the linear map ∂k
S ,Σ : Ck

Σ(K; S )→ Ck+1
Σ (K; S ) is represented by a block-matrix whose

entry in α’s column and ω’s row equals

∂k
S ,Σ

∣∣∣
α,ω

= Sα,ω + ∑
ρ

Sσρ,ω ◦ wS (ρ) ◦Sα,τρ ,

where ρ ranges over all the Σ-paths.

The fact that this definition actually produces a cochain complex follows from arguments anal-
ogous to the ones which we used in the proof of Proposition 8.8; the most significant difference
is that unlike scalars of the form [α : ω] used throughout that proof, the linear maps Sα,ω do not
(necessarily) commute with each other.

Similarly, all the results of Section 3 admit direct generalizations to the sheafy context, with
two caveats. First, we are working with cohomology rather than homology, so the boundary
matrix is transposed. And second, we are working with an arbitrary sheaf, so the coboundary
matrix is populated by block sub-matrices rather than scalar entries. For each (σC τ) in Σ, the
motivating picture is provided by the usual matrix representation of the coboundary ∂dim σ

S :
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From this picture, one can discover the row and column operations that are required to turn
the (invertible!) block Sσ,τ into a pivot, and hence deduce the cochain homotopy equivalences
which form counterparts of the maps ψ and φ from Lemma 8.11. Here is the aftermath.

THEOREM 8.18. Let S be a sheaf on a simplicial complex K and let Σ be a S -compatible acyclic
partial matching on K. Then for each dimension k ≥ 0, the sheaf cohomology group Hk(K; S ) is
isomorphic to the k-th cohomology group of the Morse cochain complex (C•Σ(K; S ), ∂•S ,Σ).

The advantage of using the Morse complex in practice for computing sheaf cohomology is
that it tends to be much smaller, since the cochain groups are built using stalks of the critical
simplices (rather than all simplices). On the other hand, the compatibility requirement on Σ
is quite severe — to find large acyclic partial matchings which happen to be compatible with a
sheaf, we require the presence of many simplex-pairs (σC τ) for which the associated restriction
map is invertible.

EXERCISES

EXERCISE 8.1. Let Σ be an acyclic partial matching on a simplicial complex K. Show that
the Euler characteristic of K is given by

χ(K) =
dim K

∑
k=0

(−1)k ·mk,

where mk is the number of k-dimensional Σ-critical simplices.

EXERCISE 8.2. Write down all the gradient paths between critical simplices in Example 8.9
and confirm that the Morse chain complex has zero boundary operators over Z/2.

EXERCISE 8.3. When not functioning as an occult symbol, the Petersen graph serves as the
source of many counterexamples in graph theory.

Impose an acyclic partial matching on this graph and use it to compute the homology groups
over Z/2 without performing any matrix operations.

EXERCISE 8.4. Show that the maps ψ• : C•(K)→ CΣ
• (K) defined in (11) form a chain map .

EXERCISE 8.5. Show that the maps φ• : CΣ
• (K)→ C•(K) defined in (12) form a chain map.

EXERCISE 8.6. Show that the maps θk : Ck(K) → Ck+1(K) from (13) serve as a chain homo-
topy between φ• ◦ ψ• and the identity chain map on Ck(K).

EXERCISE 8.7. Verify that the two diagrams in the proof of Theorem 8.15 actually commute.

EXERCISE 8.8. State and prove a version of Lemma 8.11 in the context of a sheaf S on a
simplicial complex K equipped with an S -compatible acyclic partial matching Σ.


